enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  4. Step detection - Wikipedia

    en.wikipedia.org/wiki/Step_detection

    By considering a small "window" of the signal, these algorithms look for evidence of a step occurring within the window. The window "slides" across the time series, one time step at a time. The evidence for a step is tested by statistical procedures, for example, by use of the two-sample Student's t-test.

  5. Anscombe's quartet - Wikipedia

    en.wikipedia.org/wiki/Anscombe's_quartet

    The calculated regression is offset by the one outlier, which exerts enough influence to lower the correlation coefficient from 1 to 0.816. Finally, the fourth graph (bottom right) shows an example when one high-leverage point is enough to produce a high correlation coefficient, even though the other data points do not indicate any relationship ...

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    An example of the first resample might look like this X 1 * = x 2, x 1, x 10, x 10, x 3, x 4, x 6, x 7, x 1, x 9. There are some duplicates since a bootstrap resample comes from sampling with replacement from the data. Also the number of data points in a bootstrap resample is equal to the number of data points in our original observations.

  7. Machine-generated data - Wikipedia

    en.wikipedia.org/wiki/Machine-generated_data

    Given the fairly static yet voluminous nature of machine-generated data, data owners rely on highly scalable tools to process and analyze the resulting dataset. Almost all machine-generated data is unstructured but then derived into a common structure. [4] Typically, these derived structures contain many data points/columns. With these data ...

  8. In his Intellectual Property column, Stephen Kramarsky discusses the ‘Wayback Machine,’ an “inconceivably large, entirely free archive that captures and preserves evidence of the contents of ...

  9. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.