enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Vector_autoregression

    Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series .

  3. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...

  4. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    Python: the "statsmodels" package includes models for time series analysis – univariate time series analysis: AR, ARIMA – vector autoregressive models, VAR and structural VAR – descriptive statistics and process models for time series analysis.

  5. Bayesian vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_vector_autoregression

    In statistics and econometrics, Bayesian vector autoregression (BVAR) uses Bayesian methods to estimate a vector autoregression (VAR) model. BVAR differs with standard VAR models in that the model parameters are treated as random variables , with prior probabilities , rather than fixed values.

  6. Variance decomposition of forecast errors - Wikipedia

    en.wikipedia.org/wiki/Variance_decomposition_of...

    In econometrics and other applications of multivariate time series analysis, ... of a vector autoregression ... to the other variables in the autoregression. It ...

  7. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values.

  8. Granger causality - Wikipedia

    en.wikipedia.org/wiki/Granger_causality

    Multivariate Granger causality analysis is usually performed by fitting a vector autoregressive model (VAR) to the time series. In particular, let X ( t ) ∈ R d × 1 {\displaystyle X(t)\in \mathbb {R} ^{d\times 1}} for t = 1 , … , T {\displaystyle t=1,\ldots ,T} be a d {\displaystyle d} -dimensional multivariate time series.

  9. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.