enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quickhull - Wikipedia

    en.wikipedia.org/wiki/Quickhull

    Input = a set S of n points Assume that there are at least 2 points in the input set S of points function QuickHull(S) is // Find convex hull from the set S of n points Convex Hull := {} Find left and right most points, say A & B, and add A & B to convex hull Segment AB divides the remaining (n − 2) points into 2 groups S1 and S2 where S1 are points in S that are on the right side of the ...

  3. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...

  4. Convex hull - Wikipedia

    en.wikipedia.org/wiki/Convex_hull

    The closed convex hull of a set is the closure of the convex hull, and the open convex hull is the interior (or in some sources the relative interior) of the convex hull. [9] The closed convex hull of is the intersection of all closed half-spaces containing .

  5. Graham scan - Wikipedia

    en.wikipedia.org/wiki/Graham_scan

    A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.

  6. Dynamic convex hull - Wikipedia

    en.wikipedia.org/wiki/Dynamic_convex_hull

    The dynamic convex hull problem is a class of dynamic problems in computational geometry.The problem consists in the maintenance, i.e., keeping track, of the convex hull for input data undergoing a sequence of discrete changes, i.e., when input data elements may be inserted, deleted, or modified.

  7. Chan's algorithm - Wikipedia

    en.wikipedia.org/wiki/Chan's_algorithm

    A 2D demo for Chan's algorithm. Note however that the algorithm divides the points arbitrarily, not by x-coordinate. In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space.

  8. Algorithmic problems on convex sets - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_problems_on...

    Weak membership problem (WMEM): given a vector y in Q n, and a rational ε>0, either - assert that y in S(K,ε), or - assert that y not in S(K,-ε).Closely related to the problems on convex sets is the following problem on a compact convex set K and a convex function f: R n → R given by an approximate value oracle:

  9. Kirkpatrick–Seidel algorithm - Wikipedia

    en.wikipedia.org/wiki/Kirkpatrick–Seidel_algorithm

    The Kirkpatrick–Seidel algorithm, proposed by its authors as a potential "ultimate planar convex hull algorithm", is an algorithm for computing the convex hull of a set of points in the plane, with (⁡) time complexity, where is the number of input points and is the number of points (non dominated or maximal points, as called in some texts) in the hull.