Search results
Results from the WOW.Com Content Network
Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.
Auxetic metamaterials are a type of metamaterial with a negative Poisson's ratio, so that axial elongation causes transversal elongation (in contrast to an ordinary material, where stretching in one direction causes compression in the other direction). Auxetics can be single molecules, crystals, or a particular structure of macroscopic matter ...
2 Poisson's ratio. 3 Bulk modulus. 4 Shear modulus. 5 References. 6 See also. Toggle the table of contents. Elastic properties of the elements (data page) 1 language.
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. [3] Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main ...
where is the Young's modulus along axis , is the shear modulus in direction on the plane whose normal is in direction , and is the Poisson's ratio that corresponds to a contraction in direction when an extension is applied in direction .
Unless you're in the Southeast, you're probably getting tired of how deep SEC basketball is. If that annoys you, wait until you hear this: four SEC No. 1 seeds in the NCAA Tournament.
= Poisson's Ratio. Flexural rigidity of a plate has units of Pa·m 3, i.e. one dimension of length less than the same property for the rod, as it refers to the moment per unit length per unit of curvature, and not the total moment. I is termed as moment of inertia. J is denoted as 2nd moment of inertia/polar moment of inertia.