Search results
Results from the WOW.Com Content Network
The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for
Catalan number. Fuss–Catalan number; Central binomial coefficient; Combination; Combinatorial number system; De Polignac's formula; Difference operator; Difference polynomials; Digamma function; Egorychev method; ErdÅ‘s–Ko–Rado theorem; Euler–Mascheroni constant; Faà di Bruno's formula; Factorial; Factorial moment; Factorial number ...
[39] [40] The factorial number system is a mixed radix notation for numbers in which the place values of each digit are factorials. [ 41 ] Factorials are used extensively in probability theory , for instance in the Poisson distribution [ 42 ] and in the probabilities of random permutations . [ 43 ]
When the variable is a positive integer, the number () is equal to the number of n-permutations from a set of x items, that is, the number of ways of choosing an ordered list of length n consisting of distinct elements drawn from a collection of size .
Factorial experiments are described by two things: the number of factors, and the number of levels of each factor. For example, a 2×3 factorial experiment has two factors, the first at 2 levels and the second at 3 levels. Such an experiment has 2×3=6 treatment combinations or cells.
In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...
Scott Aaronson suggests the following 12 references as further reading (out of "the 10 10 5000 quantum algorithm tutorials that are already on the web."): Shor, Peter W. (1997), "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM J. Comput. , 26 (5): 1484– 1509, arXiv : quant-ph/9508027v2 ...
Just as the factorials can be continuously interpolated by the gamma function, the superfactorials can be continuously interpolated by the Barnes G-function. [2]According to an analogue of Wilson's theorem on the behavior of factorials modulo prime numbers, when is an odd prime number ()!!