Search results
Results from the WOW.Com Content Network
The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for
[39] [40] The factorial number system is a mixed radix notation for numbers in which the place values of each digit are factorials. [41] Factorials are used extensively in probability theory, for instance in the Poisson distribution [42] and in the probabilities of random permutations. [43]
Catalan number. Fuss–Catalan number; Central binomial coefficient; Combination; Combinatorial number system; De Polignac's formula; Difference operator; Difference polynomials; Digamma function; Egorychev method; Erdős–Ko–Rado theorem; Euler–Mascheroni constant; Faà di Bruno's formula; Factorial; Factorial moment; Factorial number ...
In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [ 1 ] [ 2 ] [ 3 ] The name factorion was coined by the author Clifford A. Pickover .
The factorial of a number is ! = (), the product of positive integers up to . Factorial may also refer to: Factorial experiment, a statistical experiment over all combinations of values; Factorial code, data representation by independent components
Multiple factor analysis (MFA) is a factorial method [1] devoted to the study of tables in which a group of individuals is described by a set of variables (quantitative and / or qualitative) structured in groups.
The ordinary factorial, when extended to the gamma function, has a pole at each negative integer, preventing the factorial from being defined at these numbers. However, the double factorial of odd numbers may be extended to any negative odd integer argument by inverting its recurrence relation!! = ()!! to give !! = (+)!! +.
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. [1] This is in contrast to binary operations, which use two operands. [2] An example is any function : , where A is a set; the function is a unary operation on A.