Search results
Results from the WOW.Com Content Network
Original file (1,275 × 1,650 pixels, file size: 2.06 MB, MIME type: application/pdf, 498 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that
Minimum relevant variables in linear system (Min-RVLS) is a problem in mathematical optimization. Given a linear program, it is required to find a feasible solution in which the number of non-zero variables is as small as possible. The problem is known to be NP-hard and even hard to approximate.
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 ...
LP-type problems include many important optimization problems that are not themselves linear programs, such as the problem of finding the smallest circle containing a given set of planar points. They may be solved by a combination of randomized algorithms in an amount of time that is linear in the number of elements defining the problem, and ...
Let A and B be optimization problems and c A and c B their respective cost functions. A pair of functions f and g is an L-reduction if all of the following conditions are met: functions f and g are computable in polynomial time, if x is an instance of problem A, then f(x) is an instance of problem B, if y' is a solution to f(x), then g(y' ) is ...
"The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1– 14. doi: 10.1016/0024-3795(93)90124-7. Murty, Katta G. (January 1972). "On the number of solutions to the complementarity problem and spanning properties of complementary cones" (PDF). Linear Algebra and ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.