enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anti-diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Anti-diagonal_matrix

    Furthermore, the product of an anti-diagonal matrix with a diagonal matrix is anti-diagonal, as is the product of a diagonal matrix with an anti-diagonal matrix. An anti-diagonal matrix is invertible if and only if the entries on the diagonal from the lower left corner to the upper right corner are nonzero. The inverse of any invertible anti ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Find Q minimizing Tr( (Q − M) T (Q − M) ), subject to Q T Q = I. Though written in matrix terms, the objective function is just a quadratic polynomial. We can minimize it in the usual way, by finding where its derivative is zero. For a 3 × 3 matrix, the orthogonality constraint implies six scalar equalities that the entries of Q must satisfy.

  4. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    Thus = and = where is a diagonal matrix whose diagonal values are in general complex. The left and right singular vectors in the singular value decomposition of a normal matrix A = U D V ∗ {\displaystyle A=UDV^{*}} differ only in complex phase from each other and from the corresponding eigenvectors, since the phase must be factored out of the ...

  5. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    As the two eigenvalues of the input matrix approach each other, the input ellipse changes into a circle. A circle corresponds to a multiple of the identity matrix. A near-circle corresponds to a near-multiple of the identity matrix whose eigenvalues are nearly equal to the diagonal entries of the matrix.

  6. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The term diagonal matrix may sometimes refer to a rectangular diagonal matrix, which is an m-by-n matrix with all the entries not of the form d i,i being zero. For example: [ 1 0 0 0 4 0 0 0 − 3 0 0 0 ] or [ 1 0 0 0 0 0 4 0 0 0 0 0 − 3 0 0 ] {\displaystyle {\begin{bmatrix}1&0&0\\0&4&0\\0&0&-3\\0&0&0\\\end{bmatrix}}\quad {\text{or}}\quad ...

  7. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    An circulant matrix takes the form = [] or the transpose of this form (by choice of notation). If each is a square matrix, then the matrix is called a block-circulant matrix.. A circulant matrix is fully specified by one vector, , which appears as the first column (or row) of .

  8. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    More specifically, let A, B, C and D be four points on a circle such that the lines AC and BD are perpendicular. Denote the intersection of AC and BD by M. Drop the perpendicular from M to the line BC, calling the intersection E. Let F be the intersection of the line EM and the edge AD. Then, the theorem states that F is the midpoint AD.

  9. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    It has also rarely been called a double circle quadrilateral [2] and double scribed quadrilateral. [3] If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. [4]