Search results
Results from the WOW.Com Content Network
A crowbar circuit is an electrical circuit used for preventing an overvoltage or surge condition of a power supply unit from damaging the circuits attached to the power supply. It operates by putting a short circuit or low resistance path across the voltage output (V o ), like dropping a crowbar across the output terminals of the power supply.
Over time, leakage current causes the CMOS input to drift in a random direction, possibly causing the input state to flip. Disconnected inputs on CMOS devices can pick up noise, they can cause oscillation, the supply current may dramatically increase (crowbar power) or the device may completely destroy itself.
CMOS inverter (a NOT logic gate). Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", / s iː m ɑː s /, /-ɒ s /) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. [1]
Current mode logic (CML), or source-coupled logic (SCL), is a digital design style used both for logic gates and for board-level digital signaling of digital data. The basic principle of CML is that current from a constant current generator is steered between two alternate paths depending on whether a logic zero or logic one is being represented.
Subthreshold leakage in an nFET. Subthreshold conduction or subthreshold leakage or subthreshold drain current is the current between the source and drain of a MOSFET when the transistor is in subthreshold region, or weak-inversion region, that is, for gate-to-source voltages below the threshold voltage.
Current in the reference transistor Q 1 is held constant, thereby fixing the compliance voltage. Plots assume I C1 = 10 mA, V A = 50 V, V CC = 5 V, I S = 10 fA, β 1, = 100 independently of current. The current dependence of the resistances r π and r O is discussed in the article hybrid-pi model. The current dependence of the resistor values is:
The device operates by shunting excess current when the induced voltage exceeds the avalanche breakdown potential. It is a clamping device, suppressing all overvoltages above its breakdown voltage. It automatically resets when the overvoltage goes away, but absorbs much more of the transient energy internally than a similarly rated crowbar device.
In this case, the voltage refers to the voltage across a biological membrane, a membrane potential, and the current is the flow of charged ions through channels in this membrane. The current is determined by the conductances of these channels. In the case of ionic current across biological membranes, currents are measured from inside to outside.