Search results
Results from the WOW.Com Content Network
Hofmann Isonitrile synthesis, Carbylamine reaction; Hofmann product; Hofmann rearrangement; Hofmann–Löffler reaction, Löffler–Freytag reaction, Hofmann–Löffler–Freytag reaction; Hofmann–Martius rearrangement; Hofmann's rule; Hofmann–Sand reaction; Homo rearrangement of steroids; Hooker reaction; Horner–Wadsworth–Emmons ...
Organic reactions can be categorized based on the type of functional group involved in the reaction as a reactant and the functional group that is formed as a result of this reaction. For example, in the Fries rearrangement the reactant is an ester and the reaction product an alcohol .
An example of a common reaction is a substitution reaction written as: Nu − + C−X → C−Nu + X −. where X is some functional group and Nu is a nucleophile. The number of possible organic reactions is infinite. However, certain general patterns are observed that can be used to describe many common or useful reactions.
Response to stimuli: a response can take many forms, from the contraction of a unicellular organism to external chemicals, to complex reactions involving all the senses of multicellular organisms. A response is often expressed by motion; for example, the leaves of a plant turning toward the sun (phototropism), and chemotaxis.
is an alkaline solution of potassium permanganate; used in organic chemistry as a qualitative test for the presence of unsaturation, such as double bonds; N-Bromosuccinimide: used in radical substitution and electrophilic addition reactions in organic chemistry. Also acts as a mild oxidizer to oxidize benzylic or allylic alcohols.
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. Wikimedia Commons has media related to Reaction mechanisms . Pages in category "Reaction mechanisms"
Iron has many existing roles in biology not related to redox reactions; examples include iron–sulfur proteins, hemoglobin, and coordination complexes. Iron has a widespread distribution globally and is considered one of the most abundant in the Earth's crust, soil, and sediments. [11] Iron is a trace element in marine environments. [11]