Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The binomial series is therefore sometimes referred to as Newton's binomial theorem. Newton gives no proof and is not explicit about the nature of the series. Later, on 1826 Niels Henrik Abel discussed the subject in a paper published on Crelle's Journal, treating notably questions of convergence. [4]
These "generalized binomial coefficients" appear in Newton's generalized binomial theorem. For each k, the polynomial () can be characterized as the unique degree k polynomial p(t) satisfying p(0) = p(1) = ⋯ = p(k − 1) = 0 and p(k) = 1. Its coefficients are expressible in terms of Stirling numbers of the first kind:
in which form it is clearly recognizable as an umbral variant of the binomial theorem (for more on umbral variants of the binomial theorem, see binomial type). The Chu–Vandermonde identity can also be seen to be a special case of Gauss's hypergeometric theorem, which states that
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...
Lucas's theorem can be generalized to give an expression for the remainder when () is divided by a prime power p k.However, the formulas become more complicated. If the modulo is the square of a prime p, the following congruence relation holds for all 0 ≤ s ≤ r ≤ p − 1, a ≥ 0, and b ≥ 0.
2.2.2 Proof by binomial theorem (natural number) 2.2.3 Generalization to negative integer exponents. ... This can be generalized to rational exponents of the form / ...
The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).