enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    The binomial series is therefore sometimes referred to as Newton's binomial theorem. Newton gives no proof and is not explicit about the nature of the series. Later, on 1826 Niels Henrik Abel discussed the subject in a paper published on Crelle's Journal, treating notably questions of convergence. [4]

  3. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  4. Table of Newtonian series - Wikipedia

    en.wikipedia.org/wiki/Table_of_Newtonian_series

    Download as PDF; Printable version; ... The generalized binomial theorem gives ... This follows from the general form of a Newton series for equidistant nodes (when ...

  5. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Newton's inequalities; Symmetric function; Fluid solutions, an article giving an application of Newton's identities to computing the characteristic polynomial of the Einstein tensor in the case of a perfect fluid, and similar articles on other types of exact solutions in general relativity.

  6. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).

  7. History of calculus - Wikipedia

    en.wikipedia.org/wiki/History_of_calculus

    By 1664 Newton had made his first important contribution by advancing the binomial theorem, which he had extended to include fractional and negative exponents. Newton succeeded in expanding the applicability of the binomial theorem by applying the algebra of finite quantities in an analysis of infinite series. He showed a willingness to view ...

  8. De analysi per aequationes numero terminorum infinitas

    en.wikipedia.org/wiki/De_analysi_per_aequationes...

    Composed in 1669, [4] during the mid-part of that year probably, [5] from ideas Newton had acquired during the period 1665–1666. [4] Newton wrote And whatever the common Analysis performs by Means of Equations of a finite number of Terms (provided that can be done) this new method can always perform the same by means of infinite Equations.

  9. Negative binomial theorem - Wikipedia

    en.wikipedia.org/?title=Negative_binomial...

    Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. ... Redirect to: Binomial theorem#Newton's generalized binomial theorem;