Search results
Results from the WOW.Com Content Network
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).
To accommodate for the change of coordinates the magnitude of the Jacobian determinant arises as a multiplicative factor within the integral. This is because the n -dimensional dV element is in general a parallelepiped in the new coordinate system, and the n -volume of a parallelepiped is the determinant of its edge vectors.
Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
Repeating this decomposition eventually leads to the standard spherical coordinate system. Polyspherical coordinate systems arise from a generalization of this construction. [ 4 ] The space R n {\displaystyle \mathbb {R} ^{n}} is split as the product of two Euclidean spaces of smaller dimension, but neither space is required to be a line.
In spherical coordinates, the gradient is given by: [6] ... Then the Jacobian matrix of f is defined to be an m ...
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
In the theory of many-particle systems, Jacobi coordinates often are used to simplify the mathematical formulation. These coordinates are particularly common in treating polyatomic molecules and chemical reactions, [3] and in celestial mechanics. [4] An algorithm for generating the Jacobi coordinates for N bodies may be based upon binary trees. [5]