Search results
Results from the WOW.Com Content Network
Catalytic hydrogenation [ edit ] Catalytic hydrogenation can be used to reduce amides to amines ; however, the process often requires high hydrogenation pressures and reaction temperatures to be effective (i.e. often requiring pressures above 197 atm and temperatures exceeding 200 °C). [ 1 ]
Catalytic hydrogenation using platinum(IV) oxide (PtO 2) [23] or Raney nickel [24] Iron metal in refluxing acetic acid [25] Samarium diiodide [26] Raney nickel, platinum on carbon, or zinc dust and formic acid or ammonium formate [6] α,β-Unsaturated nitro compounds can be reduced to saturated amines by: Catalytic hydrogenation over palladium ...
In chemistry, the hydrogenation of carbon–nitrogen double bonds is the addition of the elements of dihydrogen (H 2) across a carbon–nitrogen double bond, forming amines or amine derivatives. [1] Although a variety of general methods have been developed for the enantioselective hydrogenation of ketones, [ 2 ] methods for the hydrogenation of ...
The catalytic hydrogenation of nitriles is often the most economical route available for the production of primary amines. [3] Catalysts for the reaction often include group 10 metals such as Raney nickel , [ 4 ] [ 5 ] [ 6 ] palladium black , or platinum dioxide . [ 1 ]
For example, in the three-component coupling of aldehydes, amines, and activated alkenes, the aldehyde reacts with the amine to produce an imine prior to forming the aza-MBH adduct, as in the reaction of aryl aldehydes, diphenylphosphinamide, and methyl vinyl ketone, in the presence of TiCl 4, triphenylphosphine, and triethylamine: [19]
An example of a homogeneous catalytic system is the reductive amination of ketones done with an iridium catalyst. [20] Homogenous Iridium (III) catalysts have been shown to be effective in the reductive amination of carboxylic acids , which in the past has been more difficult than aldehydes and ketones. [ 16 ]
In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H 2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols , and imines to amines .
The amine concentration in the absorbent aqueous solution is an important parameter in the design and operation of an amine gas treating process. Depending on which one of the following four amines the unit was designed to use and what gases it was designed to remove, these are some typical amine concentrations, expressed as weight percent of ...