Search results
Results from the WOW.Com Content Network
Solid sphere of radius r and mass m. = [1] Sphere (shell) of radius r 2 and mass m, with ... and the object is a hollow sphere. Right circular cone with radius r, ...
Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.
In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. [1] It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2], when t is very small compared to r (). The total surface area of the spherical shell is .
A corollary is that inside a solid sphere of constant density, the gravitational force within the object varies linearly with distance from the center, becoming zero by symmetry at the center of mass. This can be seen as follows: take a point within such a sphere, at a distance from the center of the sphere. Then you can ignore all of the ...
In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). [3] A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the relevant sort. For instance:
A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...