enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  3. Carreau fluid - Wikipedia

    en.wikipedia.org/wiki/Carreau_fluid

    Where: , , and are material coefficients: is the viscosity at zero shear rate (Pa.s), is the viscosity at infinite shear rate (Pa.s), is the characteristic time (s) and power index. The dynamics of fluid motions is an important area of physics, with many important and commercially significant applications.

  4. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    The power law model is used to display the behavior of Newtonian and non-Newtonian fluids and measures shear stress as a function of strain rate. The relationship between shear stress, strain rate and the velocity gradient for the power law model are: τ x y = − m | γ ˙ | n − 1 d v x d y , {\displaystyle \tau _{xy}=-m\left|{\dot {\gamma ...

  5. Rheopecty - Wikipedia

    en.wikipedia.org/wiki/Rheopecty

    An incorrect example often used to demonstrate rheopecty is cornstarch mixed with water (sometimes called oobleck), which is a very viscous, white fluid.It is a cheap and simple demonstration, which can be picked up by hand as a semi-solid, but flows easily when not under pressure.

  6. Glen–Nye flow law - Wikipedia

    en.wikipedia.org/wiki/Glen–Nye_flow_law

    The use of the word "law" in referring to the Glen-Nye model of ice rheology may obscure the complexity of factors which determine the range of viscous ice flow parameter values even within a single glacier, as well as the significant assumptions and simplifications made by the model itself. [13] [14] [7]

  7. Cross fluid - Wikipedia

    en.wikipedia.org/wiki/Cross_fluid

    In fluid dynamics, a Cross fluid is a type of generalized Newtonian fluid whose viscosity depends upon shear rate according to the Cross Power Law equation: (˙) = + + (˙)where (˙) is viscosity as a function of shear rate, is the infinite-shear-rate viscosity, is the zero-shear-rate viscosity, is the time constant, and is the shear-thinning index.

  8. Shear thinning - Wikipedia

    en.wikipedia.org/wiki/Shear_thinning

    Power-law fluid – Type of generalized Newtonian fluid; Bingham plastic – Material which is solid at low stress but becomes viscous at high stress; Rheology – Study of the flow of matter, primarily in a fluid state; Kaye effect – Property of complex liquids; Time-dependent viscosity

  9. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    Under certain circumstances, flows of granular materials can be modelled as a continuum, for example using the μ rheology. Such continuum models tend to be non-Newtonian, since the apparent viscosity of granular flows increases with pressure and decreases with shear rate. The main difference is the shearing stress and rate of shear.