Search results
Results from the WOW.Com Content Network
A compound Poisson process is a continuous-time stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution.
The shift geometric distribution is discrete compound Poisson distribution since it is a trivial case of negative binomial distribution. This distribution can model batch arrivals (such as in a bulk queue [5] [9]). The discrete compound Poisson distribution is also widely used in actuarial science for modelling the distribution of the total ...
where is a standard Brownian motion, and is an independent compound Poisson process with constant jump intensity and independent exponentially distributed jumps with mean . For the process to be well defined, it is necessary that κ θ ≥ 0 {\displaystyle \kappa \theta \geq 0} and μ ≥ 0 {\displaystyle \mu \geq 0} .
Further, let the process have an initial probability of starting in any of the m + 1 phases given by the probability vector (α 0,α) where α 0 is a scalar and α is a 1 × m vector. The continuous phase-type distribution is the distribution of time from the above process's starting until absorption in the absorbing state.
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
The renewal process is a generalization of the Poisson process. In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer i {\displaystyle i} before advancing to the next integer, i + 1 {\displaystyle i+1} .
In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.
In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. [1]