enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Core–mantle boundary - Wikipedia

    en.wikipedia.org/wiki/Core–mantle_boundary

    The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core.

  3. Mohorovičić discontinuity - Wikipedia

    en.wikipedia.org/wiki/Mohorovičić_discontinuity

    Earth's crust and mantle, Moho discontinuity between bottom of crust and solid uppermost mantle. The Mohorovičić discontinuity (/ ˌ m oʊ h ə ˈ r oʊ v ɪ tʃ ɪ tʃ / MOH-hə-ROH-vih-chitch; Croatian: [moxorôʋiːtʃitɕ]) [1] – usually called the Moho discontinuity, Moho boundary, or just Moho – is the boundary between the crust and the mantle of Earth.

  4. Internal structure of Earth - Wikipedia

    en.wikipedia.org/wiki/Internal_structure_of_Earth

    The Mohorovičić discontinuity is a distinct change of seismic wave velocity. This is caused by a change in the rock's density [ 17 ] – immediately above the Moho, the velocities of primary seismic waves ( P wave ) are consistent with those through basalt (6.7–7.2 km/s), and below they are similar to those through peridotite or dunite (7.6 ...

  5. Lithosphere–asthenosphere boundary - Wikipedia

    en.wikipedia.org/wiki/Lithosphere–asthenosphere...

    The seismic LVZ was first recognized by Beno Gutenberg, whose name is sometimes used to refer to the base of the seismic LAB beneath oceanic lithosphere. [5] The Gutenberg discontinuity coincides with the expected LAB depth in many studies and has also been found to become deeper under older crust, thus supporting the suggestion that the ...

  6. Travel-time curve - Wikipedia

    en.wikipedia.org/wiki/Travel-time_curve

    In other words, when the seismic wave reaches the Mohorovic discontinuity, the travel-time curve bends. Croatian seismologist Andrija Mohorovičić noticed from the travel-time curve of the 1909 earthquake that some seismic waves traveled faster than others, explaining this fact with a discontinuity in which the velocity of the P wave changes ...

  7. Gutenberg discontinuity - Wikipedia

    en.wikipedia.org/wiki/Gutenberg_Discontinuity

    The Gutenberg discontinuity occurs within Earth's interior at a depth of about 2,900 km (1,800 mi) below the surface, where there is an abrupt change in the seismic waves (generated by earthquakes or explosions) that travel through Earth.

  8. Receiver function - Wikipedia

    en.wikipedia.org/wiki/Receiver_function

    The primary method for creating a receiver function is based on analyzing the product of waves that pass from the mantle through the Moho boundary. The large compositional differences between the crust and the mantle cause large differences in seismic waves as they pass through the discontinuity. [5]

  9. Low-velocity zone - Wikipedia

    en.wikipedia.org/wiki/Low-velocity_zone

    The seismic velocities very near the surface (≲ 220±30 km) are markedly lower than at greater depths, demarking the LVZ. In geology , the low-velocity zone (LVZ) occurs close to the boundary between the lithosphere and the asthenosphere in the upper mantle .