enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    In text-to-image retrieval, users input descriptive text, and CLIP retrieves images with matching embeddings. In image-to-text retrieval, images are used to find related text content. CLIP’s ability to connect visual and textual data has found applications in multimedia search, content discovery, and recommendation systems. [31] [32]

  3. DALL-E - Wikipedia

    en.wikipedia.org/wiki/DALL-E

    DALL-E was developed and announced to the public in conjunction with CLIP (Contrastive Language-Image Pre-training). [23] CLIP is a separate model based on contrastive learning that was trained on 400 million pairs of images with text captions scraped from the Internet.

  4. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  5. Talk:Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Talk:Contrastive_Language...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  6. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    Positive examples are those that match the target. For example, if training a classifier to identify birds, the positive training data would include images that contain birds. Negative examples would be images that do not. [9] Contrastive self-supervised learning uses both positive and negative examples.

  7. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    This allows for areas of lower local contrast to gain a higher contrast. Histogram equalization accomplishes this by effectively spreading out the highly populated intensity values which are used to degrade image contrast. The method is useful in images with backgrounds and foregrounds that are both bright or both dark. In particular, the ...

  8. Get the latest updates on the U.S. Elections. Stay informed with fast facts, candidate updates, and key takeaways on the issues, all in one place.

  9. Normalization (image processing) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(image...

    The contrast enhancement tries to change the intensity of the pixel in the image, particularly in the input image for the purpose to obtain a more enhanced image .It is based on the number of techniques namely local, global, dark and bright levels of contrast .The contrast enhancement is considered as the amount of color or gray differentiation ...