Ad
related to: exploratory data analysis statistics and prob technology examples 1
Search results
Results from the WOW.Com Content Network
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
This example calculates the five-number summary for the following set of observations: 0, 0, 1, 2, 63, 61, 27, 13. These are the number of moons of each planet in the Solar System. It helps to put the observations in ascending order: 0, 0, 1, 2, 13, 27, 61, 63.
A typical "Business Statistics" course is intended for business majors, and covers [71] descriptive statistics (collection, description, analysis, and summary of data), probability (typically the binomial and normal distributions), test of hypotheses and confidence intervals, linear regression, and correlation; (follow-on) courses may include ...
d-separation; D/M/1 queue; D'Agostino's K-squared test; Dagum distribution; DAP – open source software; Data analysis; Data assimilation; Data binning; Data classification (business intelligence)
Whereas statistics and data analysis procedures generally yield their output in numeric or tabular form, graphical techniques allow such results to be displayed in some sort of pictorial form. They include plots such as scatter plots , histograms , probability plots , spaghetti plots , residual plots, box plots , block plots and biplots .
As statistics and data sets have become more complex, [a] [b] questions have arisen regarding the validity of models and the inferences drawn from them. There is a wide range of conflicting opinions on modelling. Models can be based on scientific theory or ad hoc data analysis, each employing different methods. Advocates exist for each approach ...
The simplest direct probabilistic model is the logit model, which models the log-odds as a linear function of the explanatory variable or variables. The logit model is "simplest" in the sense of generalized linear models (GLIM): the log-odds are the natural parameter for the exponential family of the Bernoulli distribution, and thus it is the simplest to use for computations.
It is important to note, however, that the accuracy and usability of results will depend greatly on the level of data analysis and the quality of assumptions. [1] Predictive analytics is often defined as predicting at a more detailed level of granularity, i.e., generating predictive scores (probabilities) for each individual organizational element.
Ad
related to: exploratory data analysis statistics and prob technology examples 1