Search results
Results from the WOW.Com Content Network
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
Conversely, it is a poor absorber of green and near-green portions of the spectrum. Hence chlorophyll-containing tissues appear green because green light, diffusively reflected by structures like cell walls, is less absorbed. [1] Two types of chlorophyll exist in the photosystems of green plants: chlorophyll a and b. [6]
The pair of P700* - P700 + has an electric potential of about −1.2 volts. The reaction center is made of two chlorophyll molecules and is therefore referred to as a dimer. [11] The dimer is thought to be composed of one chlorophyll a molecule and one chlorophyll a′ molecule. However, if P700 forms a complex with other antenna molecules, it ...
P870 → P870 * → ubiquinone → cyt bc 1 → cyt c 2 → P870. This is a cyclic process in which electrons are removed from an excited chlorophyll molecule (bacteriochlorophyll; P870), passed through an electron transport chain to a proton pump (cytochrome bc 1 complex; similar to the chloroplastic one), and then returned to the chlorophyll ...
Besides chlorophyll, plants also use pigments such as carotenes and xanthophylls. [25] Algae also use chlorophyll, but various other pigments are present, such as phycocyanin, carotenes, and xanthophylls in green algae, phycoerythrin in red algae (rhodophytes) and fucoxanthin in brown algae and diatoms resulting in a wide variety of colors.
At the reaction center, there are many polypeptides that are surrounded by pigment proteins. At the center of the reaction center is a special pair of chlorophyll molecules. Each PSII has about 8 LHCII. These contain about 14 chlorophyll a and chlorophyll b molecules, as well as about four carotenoids. In the reaction center of PSII of plants ...
The scientist Charles Barnes first used the word 'photosynthesis' in 1893. This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'.
Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene, two pheophytin, two plastoquinone, two heme, one bicarbonate, 20 lipids, the Mn 4 CaO 5 cluster (including two chloride ions), one non heme Fe 2+ and two putative Ca 2+ ions per monomer. [4] There are several crystal structures of photosystem II. [5]