Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
Unlike the standard hypergeometric distribution, which describes the number of successes in a fixed sample size, in the negative hypergeometric distribution, samples are drawn until failures have been found, and the distribution describes the probability of finding successes in such a sample.
The probability distribution of employed versus unemployed respondents in a sample of n respondents can be described as a noncentral hypergeometric distribution. The description of biased urn models is complicated by the fact that there is more than one noncentral hypergeometric distribution. Which distribution one gets depends on whether items ...
Probability mass function for Wallenius' Noncentral Hypergeometric Distribution for different values of the odds ratio ω. m 1 = 80, m 2 = 60, n = 100, ω = 0.1 ... 20. In probability theory and statistics, Wallenius' noncentral hypergeometric distribution (named after Kenneth Ted Wallenius) is a generalization of the hypergeometric distribution where items are sampled with bias.
This is the theoretical distribution model for a balanced coin, an unbiased die, a casino roulette, or the first card of a well-shuffled deck. The hypergeometric distribution, which describes the number of successes in the first m of a series of n consecutive Yes/No experiments, if the total number of successes is known. This distribution ...
The bias or odds can be estimated from an experimental value of the mean. Use Wallenius' noncentral hypergeometric distribution instead if items are sampled one by one with competition. Fisher's noncentral hypergeometric distribution is used mostly for tests in contingency tables where a conditional distribution for fixed margins is desired ...
If p = 1/n and X is geometrically distributed with parameter p, then the distribution of X/n approaches an exponential distribution with expected value 1 as n → ∞, since (/ >) = (>) = = = [()] [] =. More generally, if p = λ/n, where λ is a parameter, then as n→ ∞ the distribution of X/n approaches an exponential distribution with rate ...
In mathematics, the Gaussian or ordinary hypergeometric function 2 F 1 (a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE).