enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  4. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...

  5. Forcing function (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Forcing_function...

    [1] [2] In effect, it is a constant for each value of t. In the more general case, any nonhomogeneous source function in any variable can be described as a forcing function, and the resulting solution can often be determined using a superposition of linear combinations of the homogeneous solutions and the forcing term.

  6. Slack variable - Wikipedia

    en.wikipedia.org/wiki/Slack_variable

    As with the other variables in the augmented constraints, the slack variable cannot take on negative values, as the simplex algorithm requires them to be positive or zero. [ 2 ] If a slack variable associated with a constraint is zero at a particular candidate solution , the constraint is binding there, as the constraint restricts the possible ...

  7. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Such a constraint set is called a polyhedron or a polytope if it is bounded. Second-order cone programming (SOCP) is a convex program, and includes certain types of quadratic programs. Semidefinite programming (SDP) is a subfield of convex optimization where the underlying variables are semidefinite matrices. It is a generalization of linear ...

  8. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    Given a real matrix M and vector q, the linear complementarity problem LCP(q, M) seeks vectors z and w which satisfy the following constraints: w , z ⩾ 0 , {\displaystyle w,z\geqslant 0,} (that is, each component of these two vectors is non-negative)

  9. MUSCL scheme - Wikipedia

    en.wikipedia.org/wiki/MUSCL_scheme

    An example of MUSCL type state parabolic-reconstruction. It is possible to extend the idea of linear-extrapolation to higher order reconstruction, and an example is shown in the diagram opposite. However, for this case the left and right states are estimated by interpolation of a second-order, upwind biased, difference equation.