Search results
Results from the WOW.Com Content Network
Some practitioners of PCM are mostly concerned with the cost of the product up until the point that the customer takes delivery (e.g. manufacturing costs + logistics costs) or the total cost of acquisition. They seek to launch products that meet profit targets at launch rather than reducing the costs of a product after production.
A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...
If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any prime number is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is ...
An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)
An element x of S embeds into the completion as its principal ideal, the set ↓ x of elements less than or equal to x. Then (↓ x) u is the set of elements greater than or equal to x, and ((↓ x) u) l = ↓ x, showing that ↓ x is indeed a member of the completion. The mapping from x to ↓ x is an order-embedding. [7]
A partial order of dimension 4 (shown as a Hasse diagram) and four total orderings that form a realizer for this partial order.. In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order.
Now if any element n in M is such that n ∨ b is in F, one finds that (m ∨ n) ∨ b and (m ∨ n) ∨ a are both in F. But then their meet is in F and, by distributivity, (m ∨ n) ∨ (a ∧ b) is in F too. On the other hand, this finite join of elements of M is clearly in M, such that the assumed existence of n contradicts the disjointness ...
In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.