enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    For some differential equations, application of standard methods—such as the Euler method, explicit Runge–Kutta methods, or multistep methods (for example, Adams–Bashforth methods)—exhibit instability in the solutions, though other methods may produce stable solutions.

  3. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  4. Numerical method - Wikipedia

    en.wikipedia.org/wiki/Numerical_method

    In numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm.

  5. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    The scheme is always numerically stable and convergent but usually more numerically intensive than the explicit method as it requires solving a system of numerical equations on each time step. The errors are linear over the time step and quadratic over the space step: Δ u = O ( k ) + O ( h 2 ) . {\displaystyle \Delta u=O(k)+O(h^{2}).}

  6. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  7. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Combination with meshfree methods: Weakened weak formform of a PDE that is weaker than the standard weak form; G space — functional space used in formulating the weakened weak form; Smoothed finite element method; Variational multiscale method; List of finite element software packages

  8. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The name is in analogy with quadrature, meaning numerical integration, where weighted sums are used in methods such as Simpson's method or the Trapezoidal rule. There are various methods for determining the weight coefficients, for example, the Savitzky–Golay filter. Differential quadrature is used to solve partial differential equations ...

  9. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    In any case, choosing the largest possible absolute value of the pivot improves the numerical stability of the algorithm, when floating point is used for representing numbers. [15] Upon completion of this procedure the matrix will be in row echelon form and the corresponding system may be solved by back substitution.