Search results
Results from the WOW.Com Content Network
In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1] To make a CI, an analyst first selects a confidence level , such as 95%. The analyst then follows a procedure that outputs an interval.
For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of ...
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
Ci – cosine integral function. cis – cos + i sin function. (Also written as expi.) Cl – conjugacy class. cl – topological closure. CLT – central limit theorem. cod, codom – codomain. cok, coker – cokernel. colsp – column space of a matrix. conv – convex hull of a set. Cor – corollary. corr – correlation. cos – cosine ...
In these hypothetical repetitions, independent data sets following the same probability distribution as the actual data are considered, and a confidence interval is computed from each of these data sets; see Neyman construction. The coverage probability is the fraction of these computed confidence intervals that include the desired but ...
The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr(X = 0) = 0.05 and hence (1−p) n = .05 so n ln(1–p) = ln .05 ≈ −2
Fieller showed that if a and b are (possibly correlated) means of two samples with expectations and , and variances and and covariance , and if ,, are all known, then a (1 − α) confidence interval (m L, m U) for / is given by