enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic , this is expressed as a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.}

  3. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  4. Proofs of Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_Fermat's_little...

    Some of the proofs of Fermat's little theorem given below depend on two simplifications.. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1.This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p.

  5. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    Near the beginning of the 20th century, it was shown that a corollary of Fermat's little theorem could be used to test for primality. [8] This resulted in the Pocklington primality test. [9] However, as this test requires a partial factorization of n − 1 the running time was still quite slow in the worst case.

  6. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2 340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2.

  7. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    by Fermat's little theorem, () (this property alone defines the weaker notion of probable prime to base a, on which the Fermat test is based); the only square roots of 1 modulo n are 1 and −1. Hence, by contraposition , if n is not a strong probable prime to base a , then n is definitely composite, and a is called a witness for the ...

  8. Probable prime - Wikipedia

    en.wikipedia.org/wiki/Probable_prime

    An Euler probable prime to base a is an integer that is indicated prime by the somewhat stronger theorem that for any prime p, a (p−1)/2 equals () modulo p, where () is the Jacobi symbol. An Euler probable prime which is composite is called an Euler–Jacobi pseudoprime to base a. The smallest Euler-Jacobi pseudoprime to base 2 is 561.

  9. Chinese hypothesis - Wikipedia

    en.wikipedia.org/wiki/Chinese_hypothesis

    It is true that if n is prime, then (this is a special case of Fermat's little theorem), however the converse (if then n is prime) is false, and therefore the hypothesis as a whole is false. The smallest counterexample is n = 341 = 11×31.