enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  3. Data structure alignment - Wikipedia

    en.wikipedia.org/wiki/Data_structure_alignment

    A float (four bytes) will be 4-byte aligned. A double (eight bytes) will be 8-byte aligned on Windows and 4-byte aligned on Linux (8-byte with -malign-double compile time option). A long long (eight bytes) will be 8-byte aligned on Windows and 4-byte aligned on Linux (8-byte with -malign-double compile time option).

  4. Arithmetic underflow - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_underflow

    Arithmetic underflow can occur when the true result of a floating-point operation is smaller in magnitude (that is, closer to zero) than the smallest value representable as a normal floating-point number in the target datatype. [1] Underflow can in part be regarded as negative overflow of the exponent of the floating-point value. For example ...

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was restricted to two digits only. The largest memory supplied offered 60 000 digits, however Fortran compilers for the 1620 settled on fixed sizes such as 10, though it could be specified on a control card if the default was not satisfactory.

  6. Block floating point - Wikipedia

    en.wikipedia.org/wiki/Block_floating_point

    Block floating point (BFP) is a method used to provide an arithmetic approaching floating point while using a fixed-point processor. BFP assigns a group of significands (the non-exponent part of the floating-point number) to a single exponent, rather than single significand being assigned its own exponent. BFP can be advantageous to limit space ...

  7. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    In a few cases the implementation was merely a software-based change in the floating-point data format, but in most cases extended precision was implemented in hardware, either built into the central processor itself, or more often, built into the hardware of an optional, attached processor called a "floating-point unit" (FPU) or "floating ...

  8. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23 ) × 2 127 ≈ 3.4028235 ...

  9. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number, it can be represented as m 0 . m 1 m 2 m 3 ... m p −2 m p −1 (where m represents a significant digit, and p is the precision) with non-zero m 0 .