enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    In probability and statistics, the log-logistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a non-negative random variable. It is used in survival analysis as a parametric model for events whose rate increases initially and decreases later, as, for example, mortality rate from cancer ...

  3. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  4. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    The three main effects (A, B, C), the three two-way interactions (AB, AC, BC), and the one three-way interaction (ABC) gives the seven model components. The log-linear models can be thought of to be on a continuum with the two extremes being the simplest model and the saturated model. The simplest model is the model where all the expected ...

  5. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

  6. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    If this assumption is violated (i.e. if the data is heteroscedastic), it may be possible to find a transformation of Y alone, or transformations of both X (the predictor variables) and Y, such that the homoscedasticity assumption (in addition to the linearity assumption) holds true on the transformed variables [5] and linear regression may ...

  7. Generalized additive model - Wikipedia

    en.wikipedia.org/wiki/Generalized_additive_model

    The model relates a univariate response variable, Y, to some predictor variables, x i. An exponential family distribution is specified for Y (for example normal, binomial or Poisson distributions) along with a link function g (for example the identity or log functions) relating the expected value of Y to the predictor variables via a structure ...

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    The formulation of binary logistic regression as a log-linear model can be directly extended to multi-way regression. That is, we model the logarithm of the probability of seeing a given output using the linear predictor as well as an additional normalization factor, the logarithm of the partition function:

  9. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    It is also possible in some cases to fix the problem by applying a transformation to the response variable (e.g., fitting the logarithm of the response variable using a linear regression model, which implies that the response variable itself has a log-normal distribution rather than a normal distribution).