enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In all of these definitions, a polyhedron is typically understood as a three-dimensional example of the more general polytope in any number of dimensions. For example, a polygon has a two-dimensional body and no faces, while a 4-polytope has a four-dimensional body and an additional set of three-dimensional "cells". However, some of the ...

  3. Polytope - Wikipedia

    en.wikipedia.org/wiki/Polytope

    A polyhedron is understood as a surface whose faces are polygons, a 4-polytope as a hypersurface whose facets are polyhedra, and so forth. The idea of constructing a higher polytope from those of lower dimension is also sometimes extended downwards in dimension, with an ( edge ) seen as a 1-polytope bounded by a point pair, and a point or ...

  4. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.

  5. List of polygons, polyhedra and polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons...

    A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.

  6. Isogonal figure - Wikipedia

    en.wikipedia.org/wiki/Isogonal_figure

    In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  8. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.

  9. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.