Search results
Results from the WOW.Com Content Network
Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus. A rhombus is a tangential quadrilateral. [10] That is, it has an inscribed circle that is tangent to all four sides. A rhombus. Each angle marked with a black dot is a right angle.
Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...
The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals. [1] A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram).
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
Six identical rhombic faces can construct two configurations of trigonal trapezohedra. The acute or prolate form has three acute angle corners of the rhombic faces meeting at the two polar axis vertices. The obtuse or oblate or flat form has three obtuse angle corners of the rhombic faces meeting at the two polar axis vertices.
A rhombus with a right vertex angle; A rhombus with all angles equal; A parallelogram with one right vertex angle and two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other (i.e., a rhombus with equal diagonals)
In geometry, a rhombohedron (also called a rhombic hexahedron [1] [2] or, inaccurately, a rhomboid [a]) is a special case of a parallelepiped in which all six faces are congruent rhombi. [3] It can be used to define the rhombohedral lattice system , a honeycomb with rhombohedral cells.
Rhomboid: a parallelogram in which adjacent sides are of unequal lengths, and some angles are oblique (equiv., having no right angles). Informally: "a pushed-over oblong". Not all references agree; some define a rhomboid as a parallelogram that is not a rhombus. [4] Rectangle: all four angles are right angles (equiangular). An equivalent ...