enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    In other words, a derangement is a permutation that has no fixed points. The number of derangements of a set of size n is known as the subfactorial of n or the n th derangement number or n th de Montmort number (after Pierre Remond de Montmort). Notations for subfactorials in common use include !n, D n, d n, or n¡ . [a] [1] [2]

  3. Cycles and fixed points - Wikipedia

    en.wikipedia.org/wiki/Cycles_and_fixed_points

    The size n of the orbit is called the length of the corresponding cycle; when n = 1, the single element in the orbit is called a fixed point of the permutation. A permutation is determined by giving an expression for each of its cycles, and one notation for permutations consist of writing such expressions one after another in some order.

  4. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    The number of permutations of n with k ascents is (by definition) the Eulerian number ; this is also the number of permutations of n with k descents. Some authors however define the Eulerian number n k {\displaystyle \textstyle \left\langle {n \atop k}\right\rangle } as the number of permutations with k ascending runs, which corresponds to k ...

  5. Empty set - Wikipedia

    en.wikipedia.org/wiki/Empty_set

    A derangement is a permutation of a set without fixed points. The empty set can be considered a derangement of itself, because it has only one permutation ( 0 ! = 1 {\displaystyle 0!=1} ), and it is vacuously true that no element (of the empty set) can be found that retains its original position.

  6. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  7. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.

  8. Permanent (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Permanent_(mathematics)

    Then perm(A) is equal to the number of permutations of the n-set that satisfy all the restrictions. [9] Two well known special cases of this are the solution of the derangement problem and the ménage problem: the number of permutations of an n-set with no fixed points (derangements) is given by

  9. Rencontres numbers - Wikipedia

    en.wikipedia.org/wiki/Rencontres_numbers

    For n ≥ 0 and 0 ≤ k ≤ n, the rencontres number D n, k is the number of permutations of { 1, ..., n } that have exactly k fixed points. For example, if seven presents are given to seven different people, but only two are destined to get the right present, there are D 7, 2 = 924 ways this could happen.