enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyruvate kinase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_kinase

    FBP is the most significant source of regulation because it comes from within the glycolysis pathway. FBP is a glycolytic intermediate produced from the phosphorylation of fructose 6-phosphate . FBP binds to the allosteric binding site on domain C of pyruvate kinase and changes the conformation of the enzyme, causing the activation of pyruvate ...

  3. Pyruvate dehydrogenase complex - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_dehydrogenase_complex

    Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. [2]

  4. Dihydroxyacetone phosphate - Wikipedia

    en.wikipedia.org/wiki/Dihydroxyacetone_phosphate

    Conversely, reduction of glycolysis-derived DHAP to L-glycerol-3-phosphate provides adipose cells with the activated glycerol backbone they require to synthesize new triglycerides. Both reactions are catalyzed by the enzyme glycerol 3-phosphate dehydrogenase with NAD + /NADH as cofactor.

  5. Glycerol 3-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glycerol_3-phosphate

    Glycerol 3-phosphate is synthesized by reducing dihydroxyacetone phosphate (DHAP), an intermediate in glycolysis. The reduction is catalyzed by glycerol-3-phosphate dehydrogenase. DHAP and thus glycerol 3-phosphate can also be synthesized from amino acids and citric acid cycle intermediates via the glyceroneogenesis pathway. + NAD(P)H + H + → ...

  6. Glyceroneogenesis - Wikipedia

    en.wikipedia.org/wiki/Glyceroneogenesis

    Glyceroneogenesis is a metabolic pathway which synthesizes glycerol 3-phosphate (used to form triglycerides) from precursors other than glucose. [1] Usually, glycerol 3-phosphate is generated from glucose by glycolysis, in the liquid of the cell's cytoplasm (the cytosol).

  7. Template:Glycolysis summary - Wikipedia

    en.wikipedia.org/wiki/Template:Glycolysis_summary

    "The metabolic pathway of glycolysis converts glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."

  8. Isocitrate lyase - Wikipedia

    en.wikipedia.org/wiki/Isocitrate_lyase

    Isocitrate lyase (EC 4.1.3.1), or ICL, is an enzyme in the glyoxylate cycle that catalyzes the cleavage of isocitrate to succinate and glyoxylate. [2] [3] Together with malate synthase, it bypasses the two decarboxylation steps of the tricarboxylic acid cycle (TCA cycle) and is used by bacteria, fungi, and plants.

  9. Glyceraldehyde 3-phosphate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate...

    The first reaction is the oxidation of glyceraldehyde 3-phosphate (G3P) at the position-1 (in the diagram it is shown as the 4th carbon from glycolysis), in which an aldehyde is converted into a carboxylic acid (ΔG°'=-50 kJ/mol (−12kcal/mol)) and NAD+ is simultaneously reduced endergonically to NADH.