enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute configuration - Wikipedia

    en.wikipedia.org/wiki/Absolute_configuration

    [4] [5] The configuration of other chiral compounds was then related to that of (+)-glyceraldehyde by sequences of chemical reactions. For example, oxidation of (+)-glyceraldehyde (1) with mercury oxide gives (−)-glyceric acid (2), a reaction that does not alter the stereocenter. Thus the absolute configuration of (−)-glyceric acid must be ...

  3. Stereochemistry - Wikipedia

    en.wikipedia.org/wiki/Stereochemistry

    Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.

  4. Chiral auxiliary - Wikipedia

    en.wikipedia.org/wiki/Chiral_auxiliary

    Chiral auxiliaries are incorporated into synthetic routes to control the absolute configuration of stereogenic centers. David A. Evans' synthesis of the macrolide cytovaricin, considered a classic, utilizes oxazolidinone chiral auxiliaries for one asymmetric alkylation reaction and four asymmetric aldol reactions, setting the absolute stereochemistry of nine stereocenters.

  5. Chirality (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Chirality_(chemistry)

    A given stereocenter has two possible configurations (R and S), which give rise to stereoisomers (diastereomers and enantiomers) in molecules with one or more stereocenter. For a chiral molecule with one or more stereocenter, the enantiomer corresponds to the stereoisomer in which every stereocenter has the opposite configuration.

  6. Asymmetric carbon - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_carbon

    In stereochemistry, an asymmetric carbon is a carbon atom that is bonded to four different types of atoms or groups of atoms. [1] [2] The four atoms and/or groups attached to the carbon atom can be arranged in space in two different ways that are mirror images of each other, and which lead to so-called left-handed and right-handed versions (stereoisomers) of the same molecule.

  7. Butyl group - Wikipedia

    en.wikipedia.org/wiki/Butyl_group

    The effect of the tert-butyl group on the progress of a chemical reaction is called the Thorpe–Ingold effect illustrated in the Diels-Alder reaction below. Compared to a hydrogen substituent, the tert-butyl substituent accelerates the reaction rate by a factor of 240. [2] tert-Butyl effect. The tert-butyl effect is an example of steric hindrance.

  8. Topicity - Wikipedia

    en.wikipedia.org/wiki/Topicity

    Enantiotopic groups are identical and indistinguishable except in chiral environments. For instance, the CH 2 hydrogens in ethanol (CH 3 CH 2 OH) are normally enantiotopic, but can be made different (diastereotopic) if combined with a chiral center, for instance by conversion to an ester of a chiral carboxylic acid such as lactic acid, or if coordinated to a chiral metal center, or if ...

  9. Pyramidal inversion - Wikipedia

    en.wikipedia.org/wiki/Pyramidal_inversion

    In chemistry, pyramidal inversion (also umbrella inversion) is a fluxional process in compounds with a pyramidal molecule, such as ammonia (NH 3) "turns inside out". [1] [2] It is a rapid oscillation of the atom and substituents, the molecule or ion passing through a planar transition state. [3]