Search results
Results from the WOW.Com Content Network
After many divisions, the telomeres reach a critical length and the cell becomes senescent. It is at this point that a cell has reached its Hayflick limit. [12] [13] Hayflick was the first to report that only cancer cells are immortal. This could not have been demonstrated until he had demonstrated that normal cells are mortal.
Cellular atrophy is a decrease in cell size. If enough cells in an organ undergo atrophy the entire organ will decrease in size. Thymus atrophy during early human development (childhood) is an example of physiologic atrophy. Skeletal muscle atrophy is a common pathologic adaptation to skeletal muscle disuse (commonly called "disuse atrophy").
The membranes are slightly different from cell to cell and a cell's function determines the size and structure of the ER. [ 18 ] Mitochondria : Commonly known as the powerhouse of the cell is a double membrane bound cell organelle. [ 19 ]
Most important among these is a cell nucleus, [2] an organelle that houses the cell's DNA. This nucleus gives the eukaryote its name, which means "true kernel (nucleus)". Some of the other differences are: The plasma membrane resembles that of prokaryotes in function, with minor differences in the setup. Cell walls may or may not be present.
The enlarged cells that are able to re-enter the cell cycle are prone to DNA damage and experience abnormalities in signaling for repair (NHEJ pathway), eventually leading to a replication failure and a permanent cell-cycle exit. [24] Overall, a consistent correlation between larger cell size and senescence has been established.
Light micrograph of a moss's leaf cells at 400X magnification. The following outline is provided as an overview of and topical guide to cell biology: . Cell biology – A branch of biology that includes study of cells regarding their physiological properties, structure, and function; the organelles they contain; interactions with their environment; and their life cycle, division, and death.
Cell division plays an important role in determining the fate of the cell. This is due to there being the possibility of an asymmetric division. This as a result leads to cytokinesis producing unequal daughter cells containing completely different amounts or concentrations of fate-determining molecules.
In smaller cells, the diffusion of molecules is more rapid, but diffusion slows as the size of the cell increases, so larger cells may need cytoplasmic streaming for efficient function. [1] The green alga genus Chara possesses some very large cells, up to 10 cm in length, [2] and cytoplasmic streaming has been studied in these large cells. [3]