Search results
Results from the WOW.Com Content Network
The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle). In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex.
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base.
The altitude to the hypotenuse is the geometric mean (mean proportional) of the two segments of the hypotenuse. [2]: 243 Each leg of the triangle is the mean proportional of the hypotenuse and the segment of the hypotenuse that is adjacent to the leg. In equations, =, (this is sometimes known as the right triangle altitude theorem)
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
If the triangle ABC is oblique (does not contain a right-angle), the pedal triangle of the orthocenter of the original triangle is called the orthic triangle or altitude triangle. That is, the feet of the altitudes of an oblique triangle form the orthic triangle, DEF .
The height or altitude of a triangle, which is the length from a vertex of a triangle to the line formed by the opposite side; The height of a pyramid, which is the smallest distance from the apex to the base;
Donald Trump's election victory last week is already having an effect on global supply chains. While many firms are waiting to see what Trump's trade policies will be, some are planning ahead.
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]