Search results
Results from the WOW.Com Content Network
The formula states that if γ is a parametrization of a great circle then (()) (()) =, where ρ(P) is the distance from a point P on the great circle to the z-axis, and ψ(P) is the angle between the great circle and the meridian through the point P.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Size of this JPG preview of this PDF file: ... This file has been identified as being free of known restrictions under copyright law, including all related and ...
SageMath is designed partially as a free alternative to the general-purpose mathematics products Maple and MATLAB. It can be downloaded or used through a web site. SageMath comprises a variety of other free packages, with a common interface and language. SageMath is developed in Python.
The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center. In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space R n + 1. Half of a great circle may be called a great ...
They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such as great-circle distance. The first (direct) method computes the location of a point that is a given distance and azimuth (direction) from another point. The second (inverse) method ...
Visual calculus, invented by Mamikon Mnatsakanian (known as Mamikon), is an approach to solving a variety of integral calculus problems. [1] Many problems that would otherwise seem quite difficult yield to the method with hardly a line of calculation. Mamikon collaborated with Tom Apostol on the 2013 book New Horizons in Geometry describing the ...