Search results
Results from the WOW.Com Content Network
The members of the algebra may be decomposed by grade (as in the formalism of differential forms) and the (geometric) product of a vector with a k-vector decomposes into a (k − 1)-vector and a (k + 1)-vector. The (k − 1)-vector component can be identified with the inner product and the (k + 1)-vector component with the outer product. It is ...
In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.
In mathematical physics, the Dirac algebra is the Clifford algebra, ().This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin- 1 / 2 particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.
The linear entropy then is obtained by expanding ln ρ = ln (1−(1−ρ)), around a pure state, ρ 2 = ρ; that is, expanding in terms of the non-negative matrix 1−ρ in the formal Mercator series for the logarithm, = + + +, and retaining just the leading term.
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in , .
The bra–ket notation is particularly useful in Hilbert spaces which have an inner product [5] that allows Hermitian conjugation and identifying a vector with a continuous linear functional, i.e. a ket with a bra, and vice versa (see Riesz representation theorem). The inner product on Hilbert space ( , ) (with the first argument anti linear as ...
The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos.It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.