Search results
Results from the WOW.Com Content Network
A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions. It was designed in the 1820s, and was first created by Charles Babbage . The name difference engine is derived from the method of finite differences , a way to interpolate or tabulate functions by using a small set of polynomial co-efficients.
The 19th century also saw the designs of Charles Babbage calculating machines, first with his difference engine, started in 1822, which was the first automatic calculator since it continuously used the results of the previous operation for the next one, and second with his analytical engine, which was the first programmable calculator, using ...
It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if f {\displaystyle f} is a holomorphic function , real-valued on the real line, which can be evaluated at points in the complex plane near x {\displaystyle x} , then there are stable methods.
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
where is the original intensity of the particular stimulation, is the addition to it required for the change to be perceived (the JND), and k is a constant. This rule was first discovered by Ernst Heinrich Weber (1795–1878), an anatomist and physiologist, in experiments on the thresholds of perception of lifted weights.
When ,,, and the initial condition are real numbers, this difference equation is called a Riccati difference equation. [ 3 ] Such an equation can be solved by writing w t {\displaystyle w_{t}} as a nonlinear transformation of another variable x t {\displaystyle x_{t}} which itself evolves linearly.