Search results
Results from the WOW.Com Content Network
A solvent dissolves a solute, resulting in a solution Ethyl acetate, a nail polish solvent. [1] A solvent (from the Latin solvō, "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid.
Solvent Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) ... Toggle the table of contents. List of boiling and freezing information of ...
Water (H 2 O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue.It is by far the most studied chemical compound [20] and is described as the "universal solvent" [21] and the "solvent of life". [22]
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then acetonitrile. Consider the following acid dissociation equilibrium: HA ⇌ A − + H + Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
K b, the ebullioscopic constant, which is dependent on the properties of the solvent. It can be calculated as K b = RT b 2 M/ΔH v, where R is the gas constant, and T b is the boiling temperature of the pure solvent [in K], M is the molar mass of the solvent, and ΔH v is the heat of vaporization per mole of the solvent.