enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Root-finding of polynomials – Algorithms for finding zeros of polynomials; Square-free polynomial – Polynomial with no repeated root; Vieta's formulas – Relating coefficients and roots of a polynomial; Cohn's theorem relating the roots of a self-inversive polynomial with the roots of the reciprocal polynomial of its derivative.

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Consider the problem of finding the positive number x with cos x = x 3. We can rephrase that as finding the zero of f(x) = cos(x) − x 3. We have f ′ (x) = −sin(x) − 3x 2. Since cos(x) ≤ 1 for all x and x 3 > 1 for x > 1, we know that our solution lies between 0 and 1.

  6. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).

  7. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.

  8. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1] A "zero" of a function is thus an input value that produces an output ...

  9. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    We then use this new value of x as x 2 and repeat the process, using x 1 and x 2 instead of x 0 and x 1. We continue this process, solving for x 3 , x 4 , etc., until we reach a sufficiently high level of precision (a sufficiently small difference between x n and x n −1 ):