Search results
Results from the WOW.Com Content Network
The adjoint state space is chosen to simplify the physical interpretation of equation constraints. [3] Adjoint state techniques allow the use of integration by parts, resulting in a form which explicitly contains the physically interesting quantity. An adjoint state equation is introduced, including a new unknown variable. The adjoint method ...
The definitions via universal morphisms are easy to state, and require minimal verifications when constructing an adjoint functor or proving two functors are adjoint. They are also the most analogous to our intuition involving optimizations. The definition via hom-sets makes symmetry the most apparent, and is the reason for using the word adjoint.
Several of these share a similar formalism: if A is adjoint to B, then there is typically some formula of the type (Ax, y) = (x, By). Specifically, adjoint or adjunction may mean: Adjoint of a linear map, also called its transpose in case of matrices; Hermitian adjoint (adjoint of a linear operator) in functional analysis
In this case, the adjoint map is given by Ad g (x) = gxg −1. If G is SL(2, R) (real 2×2 matrices with determinant 1), the Lie algebra of G consists of real 2×2 matrices with trace 0. The representation is equivalent to that given by the action of G by linear substitution on the space of binary (i.e., 2 variable) quadratic forms.
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [ 1 ] [ 2 ] It is occasionally known as adjunct matrix , [ 3 ] [ 4 ] or "adjoint", [ 5 ] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose .
The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().
This formula does not explicitly depend on the definition of the scalar product. It is therefore sometimes chosen as a definition of the adjoint operator. When is defined according to this formula, it is called the formal adjoint of T. A (formally) self-adjoint operator is an operator equal to its own (formal) adjoint.
In mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign: f ∗ ( x ) = f ( − x ) {\displaystyle f^{*}(x)=f(-x)}