enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 5-manifold - Wikipedia

    en.wikipedia.org/wiki/5-manifold

    This turns out to be easier than the 3- or 4-dimensional case: the 3-dimensional case is the Thurston geometrisation conjecture, and the 4-dimensional case was solved by Michael Freedman (1982) in the topological case, [5] but is a very hard unsolved problem in the smooth case. In dimension 5, the smooth classification of simply connected ...

  3. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  4. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to . More precisely, given p ∈ M {\displaystyle p\in M} one is interested in curves γ p : R → M {\displaystyle \gamma _{p}:\mathbb {R} \to M} such that:

  5. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity.

  6. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.

  7. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  8. Differential topology - Wikipedia

    en.wikipedia.org/wiki/Differential_topology

    In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.

  9. Smooth structure - Wikipedia

    en.wikipedia.org/wiki/Smooth_structure

    This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal smooth atlas and vice versa. In general, computations with the maximal atlas of a manifold are rather unwieldy.