enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  3. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    To bisect an angle with straightedge and compass, one draws a circle whose center is the vertex. The circle meets the angle at two points: one on each leg. Using each of these points as a center, draw two circles of the same size. The intersection of the circles (two points) determines a line that is the angle bisector.

  4. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length and two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    An angle bisector of a triangle is a straight line through a vertex that cuts the corresponding angle in half. The three angle bisectors intersect in a single point, the incenter, which is the center of the triangle's incircle. The incircle is the circle that lies inside the triangle and touches all three sides. Its radius is called the inradius.

  6. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. [3] [4] The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two.

  7. Stewart's theorem - Wikipedia

    en.wikipedia.org/wiki/Stewart's_theorem

    Diagram of Stewart's theorem. Let a, b, c be the lengths of the sides of a triangle. Let d be the length of a cevian to the side of length a.If the cevian divides the side of length a into two segments of length m and n, with m adjacent to c and n adjacent to b, then Stewart's theorem states that + = (+).

  8. Cevian - Wikipedia

    en.wikipedia.org/wiki/Cevian

    In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [1] [2] Medians and angle bisectors are special cases of cevians.

  9. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    PLL problems generally have 2 solutions. As shown above, if a circle is tangent to two given lines, its center must lie on one of the two lines that bisect the angle between the two given lines. By symmetry, if such a circle passes through a given point P, it must also pass through a point Q that is the "mirror image" of P about the angle bisector.