Search results
Results from the WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
The wider applicability and increased robustness of non-parametric tests comes at a cost: in cases where a parametric test's assumptions are met, non-parametric tests have less statistical power. In other words, a larger sample size can be required to draw conclusions with the same degree of confidence.
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail.. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic.
6. Calculate the p-value Compare the computed Hosmer–Lemeshow statistic to a chi-squared distribution with Q − 2 degrees of freedom to calculate the p-value. There are Q = 10 groups in the caffeine example, giving 10 – 2 = 8 degrees of freedom. The p-value for a chi-squared statistic of 17.103 with df = 8 is p = 0.029. The p-value is ...
Nonparametric models are therefore also called distribution free. Nonparametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the frequency distributions of the variables being assessed.
Permutational multivariate analysis of variance (PERMANOVA), [1] is a non-parametric multivariate statistical permutation test. PERMANOVA is used to compare groups of objects and test the null hypothesis that the centroids and dispersion of the groups as defined by measure space are equivalent for all groups. A rejection of the null hypothesis ...
If the test statistic has a p-value below an appropriate threshold (e.g. p < 0.05) then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed. If the Breusch–Pagan test shows that there is conditional heteroskedasticity, one could either use weighted least squares (if the source of heteroskedasticity is known) or ...