enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    Thermal conductivity and resistivity. The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m −1 ·K −1. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.

  3. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    Since heat density is proportional to temperature in a homogeneous medium, the heat equation is still obeyed in the new units. Suppose that a body obeys the heat equation and, in addition, generates its own heat per unit volume (e.g., in watts/litre - W/L) at a rate given by a known function q varying in space and time. [ 6 ]

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  5. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The temperature Stefan obtained was a median value of previous ones, 1950 °C and the absolute thermodynamic one 2200 K. As 2.57 4 = 43.5, it follows from the law that the temperature of the Sun is 2.57 times greater than the temperature of the lamella, so Stefan got a value of 5430 °C or 5700 K. This was the first sensible value for the ...

  6. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    As heat is lost to the ambient, this heat transfer leads to a drop in temperature of the body given by: [5] =, where ρ = density, c p = specific heat and V is the body volume. The negative sign indicates the temperature drops when the heat transfer is outward from the body (that is, when F > 0). Equating these two expressions for the heat ...

  7. Thermal diffusivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_diffusivity

    In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. [ 1 ] It is a measure of the rate of heat transfer inside a material. It has units of m 2 /s. Thermal diffusivity is usually denoted by lowercase alpha (α), but a, h, κ (kappa), 2 K, 3 , D, are also used.

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The law was actually the last of the laws to be formulated. First law of thermodynamics. d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where. d U {\displaystyle dU} is the infinitesimal increase in internal energy of the system, δ Q {\displaystyle \delta Q} is the infinitesimal heat flow into the system, and.

  9. Heat flux - Wikipedia

    en.wikipedia.org/wiki/Heat_flux

    through a surface. In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density[1], heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m 2). It has both a direction and a magnitude, and so it is a vector quantity.