enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Like rotation matrices, quaternions must sometimes be renormalized due to rounding errors, to make sure that they correspond to valid rotations. The computational cost of renormalizing a quaternion, however, is much less than for normalizing a 3 × 3 matrix. Quaternions also capture the spinorial character of rotations in three dimensions.

  4. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A quaternion has 4 real values: q w (the real part or the scalar part) and q x q y q z (the imaginary part). Defining the norm of the quaternion as follows: ‖ ‖ = + + + A unit quaternion satisfies: ‖ ‖ =

  5. Quaternionic representation - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_representation

    A common example involves the quaternionic representation of rotations in three dimensions. Each (proper) rotation is represented by a quaternion with unit norm.There is an obvious one-dimensional quaternionic vector space, namely the space H of quaternions themselves under left multiplication.

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The quaternion formulation of the composition of two rotations R B and R A also yields directly the rotation axis and angle of the composite rotation R C = R B R A. Let the quaternion associated with a spatial rotation R is constructed from its rotation axis S and the rotation angle φ this axis. The associated quaternion is given by,

  7. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The real quaternion 1 is the identity element. The real quaternions commute with all other quaternions, that is aq = qa for every quaternion q and every real quaternion a. In algebraic terminology this is to say that the field of real quaternions are the center of this quaternion algebra.

  8. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    The Euler parameters can be viewed as the coefficients of a quaternion; the scalar parameter a is the real part, the vector parameters b, c, d are the imaginary parts. Thus we have the quaternion = + + +, which is a quaternion of unit length (or versor) since

  9. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    A geometrically real quaternion is one that can be written as a linear combination of i, j and k, such that the squares of the coefficients add up to one. Hamilton demonstrated that there had to be additional roots of this equation in addition to the geometrically real roots.