Search results
Results from the WOW.Com Content Network
The two curves of this (2, 8)-torus link have linking number four. In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other.
A parabola has as (two-sided) offsets rational curves of degree 6. A hyperbola or an ellipse has as (two-sided) offsets an algebraic curve of degree 8. A Bézier curve of degree n has as (two-sided) offsets algebraic curves of degree 4n − 2. In particular, a cubic Bézier curve has as (two-sided) offsets algebraic curves of degree 10.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
The arc length of a curve on the surface and the surface area can be found ... This perspective helps one calculate the angle between two curves on S intersecting at ...
Two curves in the plane intersecting at a point p are said to have: 0th-order contact if the curves have a simple crossing (not tangent). 1st-order contact if the two curves are tangent. 2nd-order contact if the curvatures of the curves are equal. Such curves are said to be osculating. 3rd-order contact if the derivatives of the curvature are ...
The area between two graphs can be evaluated by calculating the difference between the integrals of the two functions. The area between a positive-valued curve and the horizontal axis, measured between two values a and b (b is defined as the larger of the two values) on the horizontal axis, is given by the integral from a to b of the function ...
For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. [1] [2] [3]
Next we calculate E 2. The curve itself is the curve that is tangent to all of its own tangent lines. It follows that = {(,): =} . Finally we calculate E 3. Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane.