Search results
Results from the WOW.Com Content Network
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
A model of a biological system is converted into a system of equations, although the word 'model' is often used synonymously with the system of corresponding equations. The solution of the equations, by either analytical or numerical means, describes how the biological system behaves either over time or at equilibrium. There are many different ...
The approximations used bring into question the validity or relevance of numerical solutions. To address these questions several notions of stability have been introduced in the study of dynamical systems, such as Lyapunov stability or structural stability. The stability of the dynamical system implies that there is a class of models or initial ...
System in open-loop. If the closed-loop dynamics can be represented by the state space equation (see State space (controls)) _ ˙ = _ + _, with output equation _ = _ + _, then the poles of the system transfer function are the roots of the characteristic equation given by
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
The non-linearity of the material derivative in balance equations in general, and the complexities of Cauchy's momentum equation and Navier-Stokes equation makes the basic equations in classical mechanics exposed to establishing of simpler approximations. Some examples of governing differential equations in classical continuum mechanics are
A state function describes equilibrium states of a system, thus also describing the type of system. A state variable is typically a state function so the determination of other state variable values at an equilibrium state also determines the value of the state variable as the state function at that state. The ideal gas law is a good example ...
The Lotka–Volterra system of equations is an example of a Kolmogorov population model (not to be confused with the better known Kolmogorov equations), [2] [3] [4] which is a more general framework that can model the dynamics of ecological systems with predator–prey interactions, competition, disease, and mutualism.