Search results
Results from the WOW.Com Content Network
The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.
In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions.It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape
For very small samples the multinomial test for goodness of fit, and Fisher's exact test for contingency tables, or even Bayesian hypothesis selection are preferable to the G-test. [2] McDonald recommends to always use an exact test (exact test of goodness-of-fit, Fisher's exact test ) if the total sample size is less than 1 000 .
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense.
The term generalized logistic distribution is ... the probability density function (pdf): ... all the component functions are readily available in software packages ...
The probability density, cumulative distribution, and inverse cumulative distribution functions of a generalized chi-squared variable do not have simple closed-form expressions. But there exist several methods to compute them numerically: Ruben's method, [ 7 ] Imhof's method, [ 8 ] IFFT method, [ 6 ] ray method, [ 6 ] and ellipse approximation.
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
GLIM (an acronym for Generalized Linear Interactive Modelling) is a statistical software program for fitting generalized linear models (GLMs). It was developed by the Royal Statistical Society's Working Party on Statistical Computing (later renamed the GLIM Working Party), [1] chaired initially by John Nelder. [2]